已知函数f(x)=loga(x+1),g(x)=loga(1-x)(其中a>0,且a≠1)(1)判断函数f(x)-g(x)的奇偶
已知函数f(x)=loga(x+1),g(x)=loga(1-x)(其中a>0,且a≠1)(1)判断函数f(x)-g(x)的奇偶性,并予以证明;(2)求使f(x)+g(x...
已知函数f(x)=loga(x+1),g(x)=loga(1-x)(其中a>0,且a≠1)(1)判断函数f(x)-g(x)的奇偶性,并予以证明;(2)求使f(x)+g(x)<0成立的x的集合.
展开
1个回答
展开全部
(1)函数f(x)-g(x)是奇函数,
证明:令F(x)=f(x)-g(x)=loga(x+1)-loga(1-x)=loga
,
由
求得-1<x<1,故F(x) 的定义域为(-1,1).
再由F(-x)=loga
=-loga
=-F(x),可得F(x)=f(x)-g(x)是奇函数.
(2)要使 f(x)+g(x)<0成立,只要loga(1+x)(1-x)<0.
①当a>1时,由loga(1+x)(1-x)<0 可得,0<(1+x)(1-x)<1,解得-1<x<0,或 0<x<1,
故使f(x)+g(x)<0成立的x的集合为(-1,0)∪(0,1).
②当 0<a<1时,由loga(1+x)(1-x)<0 可得 (1+x)(1-x)>1,解得 x∈?,
此时,使f(x)+g(x)<0成立的x的集合为?.
证明:令F(x)=f(x)-g(x)=loga(x+1)-loga(1-x)=loga
1+x |
1?x |
由
|
再由F(-x)=loga
1?x |
1+x |
1+x |
1?x |
(2)要使 f(x)+g(x)<0成立,只要loga(1+x)(1-x)<0.
①当a>1时,由loga(1+x)(1-x)<0 可得,0<(1+x)(1-x)<1,解得-1<x<0,或 0<x<1,
故使f(x)+g(x)<0成立的x的集合为(-1,0)∪(0,1).
②当 0<a<1时,由loga(1+x)(1-x)<0 可得 (1+x)(1-x)>1,解得 x∈?,
此时,使f(x)+g(x)<0成立的x的集合为?.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询