(本小题满分7分)已知:等边三角形ABC如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP
(本小题满分7分)已知:等边三角形ABC如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;(2)如图2,P为...
(本小题满分7分)已知:等边三角形ABC如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想; (2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD
展开
1个回答
展开全部
猜想:AP="BP+PC " ------------------------------1分 (1)证明:延长BP至E,使PE=PC,联结CE ∵∠BPC=120° ∴∠CPE=60°,又PE=PC ∴△CPE为等边三角形 ∴CP=PE=CE,∠PCE=60° ∵△ABC为等边三角形 ∴AC=BC,∠BCA=60° ∴∠ACB=∠PCE, ∴∠ACB+∠BCP=∠PCE+∠BCP 即:∠ACP=∠BCE ∴△ACP≌△BCE ∴AP=BE-------------------------2分 ∵BE=BP+PE ∴AP="BP+PC" --------------------------------------------- 3分 (2)方法一: 在AD外侧作等边△AB′D --------------------- 4分 则点P在三角形ADB′外 ∵∠APD=120°∴由(1)得PB′=AP+PD 在△PB′C中,有PB′+PC>CB′, ∴PA+PD+PC>CB′ ------------------------------------ 5分 ∵△AB′D、△ABC是等边三角形 ∴AC=AB,AB′=AD, ∠BAC=∠DA B′=60° ∴∠BAC+∠CAD=∠DAB′+∠CAD 即:∠BAD=∠CAB′ ∴△AB′C≌△ADB ∴C B′="BD " -------------------------------------- 6分 ∴PA+PD+PC>BD ----------------------------------- 7分 方法二:延长DP到M使PM=PA,联结AM、BM ∵∠APD=120°, ∴△APM是等边三角形, -----------------------------4分 ∴AM=AP,∠PAM=60° ∴DM="PD+PA " ------------------------------5分 ∵△ABC是等边三角形 ∴AB=AC,∠BAC=60° ∴△AMB≌△APC ∴BM="PC " -------------------------------------------6分 在△BDM中,有DM + BM>BD, ∴PA+PD+PC>BD ---------------------------------------- |
略 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询