4个回答
展开全部
设g(x)=x^3,h(x)=3x-a
f(x)=x^3-3x+a有三个不同零点
即g(x)与h(x)有三个交点
g'(x)=3x^2
h'(x)=3
当g(x)与h(x)相切时
g'(x)=h'(x),3x^2=3,得x=1,或x=-1
当x=1时,得a=2
当x=-1时,得a=-2
则-2<a<2
望采纳
f(x)=x^3-3x+a有三个不同零点
即g(x)与h(x)有三个交点
g'(x)=3x^2
h'(x)=3
当g(x)与h(x)相切时
g'(x)=h'(x),3x^2=3,得x=1,或x=-1
当x=1时,得a=2
当x=-1时,得a=-2
则-2<a<2
望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你别求导数啊,高一貌似没学导数呢。要教他画图。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-01-27
展开全部
解:令g1(x)=x³-a²-1+a g2(x)=ax²+2ax+a
g2(x)=a(x+1)²
①当a=0时 g1(x)=x³-1 g2(x)=0
f(x)有且只有一个零点
g2(x)=a(x+1)²
①当a=0时 g1(x)=x³-1 g2(x)=0
f(x)有且只有一个零点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询