高一数学对数函数选择题有答案,求详细解释,高手来。

高一数学对数函数选择题有答案,求详细解释,高手来。第27题,正确答案选择是B,求计算的详细过程,越详细越好,谢谢。... 高一数学对数函数选择题有答案,求详细解释,高手来。
第27题,正确答案选择是B,求计算的详细过程,越详细越好,谢谢。
展开
vdakulav
2013-01-27 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4474
采纳率:74%
帮助的人:1712万
展开全部
解:
注意多项式:x+√(x²+1) = [(x²+1)-x²] / [√(x²+1)-x] = 1/[√(x²+1)-x]
因此:
f(-x)=2/x² +lg[-x+√(x²+1)]
=2/x² +lg{1/[√(x²+1)+x]}
=2/x² -lg[√(x²+1)+x]
由此:
f(x)+f(-x)=4/x²,则:
f(1)+f(-1)=4,带入f(-1)=1.62,则:
f(1)=4-1.62=2.38

选B
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蛋黄煎蛋
2013-01-27 · TA获得超过193个赞
知道答主
回答量:81
采纳率:0%
帮助的人:36.7万
展开全部
首先解析你的错误答案,如果选C的话,则表示f(x)是偶函数,你令X= -X明显f(x)不等于f(-x)

另外的,就见上面他们的答案吧,很详细了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xiangyongwen5
2013-01-27 · 超过10用户采纳过TA的回答
知道答主
回答量:30
采纳率:0%
帮助的人:26万
展开全部
这样做,f(x)+f(-x)=......=4/x2;然后代入x=1得f(1)+f(-1)=4;所以f(-1)=4-f(1)=2.38.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zxqsyr
2013-01-27 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.6亿
展开全部
f(-1)=2/(-1)^2+lg{-1+√[(-1)^2+1]}
2/(-1)^2+lg{-1+√[(-1)^2+1]}=1.62
2+lg{-1+√2}=1.62
lg{-1+√2}=-0.38
lg{√2-1}=-0.38

f(1)=2/(1)^2+lg{1+√[(1)^2+1]}
=2+lg{1+√2}
=2+lg{1/(√2-1)}
=2-lg{√2-1}
=2-(-0.38)
=2+0.38
=2.38
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
david940408
2013-01-27 · TA获得超过5554个赞
知道大有可为答主
回答量:2964
采纳率:100%
帮助的人:1710万
展开全部
f(x)+f(-x)=2/x^2+2/x^2+...=4/x^2(可以验证省略号部分为0)
所以f(1)+f(-1)=4
f(1)≈4-1.62=2.38
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式