如图,梯形 ABCD中上底为2,下底为3,三角形ADO的面积为12,那么梯形ABCD的面积为多少? 30

这是小学5年纪奥数,标准答案是12/6*25=50,请问为什么?请不要用网上相似比的答案。... 这是小学5年纪奥数,标准答案是12/6*25=50,请问为什么?
请不要用网上相似比的答案。
展开
 我来答
Only_唯漪
2013-01-29 · TA获得超过6.6万个赞
知道大有可为答主
回答量:4825
采纳率:0%
帮助的人:6885万
展开全部
这一题要用到相似,由AB‖CD得ΔAOB∽ΔCOD,所以AB/CD=OA/OC=OB/OD,又因为AB=2,CD=3,可得AB/CD=OA/OC=OB/OD=2/3
接下来利用三角形等高进行求解,由于ΔAOD=OA×h×0.5,ΔCOD=OC×h×0.5,而他们的高相等,所以ΔAOD/ΔCOD=OA/OC=2/3,知道ΔAOD=12,所以ΔCOD=18,所以ΔADC=ΔAOD+ΔCOD=12+18=30
又由于AB‖CD,所以AB与CD间的距离相等,则ΔABC与ΔADC等高,而AB/CD=2/3,所以ΔABC/ΔADC=2/3,所以ΔABC=20,所以梯形ABCD=ΔADC+ΔABC=50

很高兴为您解答,祝你学习进步!【the1900】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
追问
这是小学5年纪奥数,标准答案是12/6*25=50,请问为什么?
请不要用网上相似比的答案。
匿名用户
2013-01-30
展开全部
这一题要用到相似,由AB‖CD得ΔAOB∽ΔCOD,所以AB/CD=OA/OC=OB/OD,又因为AB=2,CD=3,可得AB/CD=OA/OC=OB/OD=2/3
接下来利用三角形等高进行求解,由于ΔAOD=OA×h×0.5,ΔCOD=OC×h×0.5,而他们的高相等,所以ΔAOD/ΔCOD=OA/OC=2/3,知道ΔAOD=12,所以ΔCOD=18,所以ΔADC=ΔAOD+ΔCOD=12+18=30
又由于AB‖CD,所以AB与CD间的距离相等,则ΔABC与ΔADC等高,而AB/CD=2/3,所以ΔABC/ΔADC=2/3,所以ΔABC=20,所以梯形ABCD=ΔADC+ΔABC=50
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
potti1114
推荐于2017-11-20 · TA获得超过7044个赞
知道小有建树答主
回答量:900
采纳率:0%
帮助的人:93.6万
展开全部
面积为50
ao:oc=bo:od=ab:cd=2:3
三角形aod面积:三角形cod面积=ao:oc=2:3,所以三角形cod面积=18
三角形adc面积=三角形ado面积+三角形cod面积=12+18=30,
三角形abc面积:三角形adc面积=ab:cd=2:3,所以三角形abc面积=20
所以梯形abcd面积=三角形adc面积+三角形abc面积=30+20=50
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式