利用分部积分法求解不定积分:∫dx/(x³+1),急求详细解答过程!!!详解! 10
展开全部
因为
x^3+1=(x+1)(x²-x+1)
所以
1/(x^3+1)=A/(x+1)+(Bx+C)/(x²-x+1)
A(x²-x+1)+(Bx+C)(x+1)=1
(A+B)x²+(B+C-A)x+A+C=1
A+B=0
B+C=A
A+C=1
A=1/3
B= -1/3
C=2/3
所以
∫1/(x^3+1)dx
=∫[1/3*1/(x+1)+(-1/3*x+2/3)/(x²-x+1)]dx
=1/3*ln|x+1|-1/6*∫(2x-4)/(x²-x+1)dx
=1/3*ln|x+1|-1/6*∫(2x-1)/(x²-x+1)dx+1/2*∫1/(x²-x+1)dx
=1/3*ln|x+1|-1/6*ln(x²-x+1)+1/2*∫1/[(x-1/2)²+(√3/2)²]d(x-1/2)
=1/3*ln|x+1|-1/6*ln(x²-x+1)+1/2*√3/2*arctan[(x-1)/(√3/2)]+C
=1/3*ln|x+1|-1/6*ln(x²-x+1)+1/√3*arctan(2x-1)/√3+C
x^3+1=(x+1)(x²-x+1)
所以
1/(x^3+1)=A/(x+1)+(Bx+C)/(x²-x+1)
A(x²-x+1)+(Bx+C)(x+1)=1
(A+B)x²+(B+C-A)x+A+C=1
A+B=0
B+C=A
A+C=1
A=1/3
B= -1/3
C=2/3
所以
∫1/(x^3+1)dx
=∫[1/3*1/(x+1)+(-1/3*x+2/3)/(x²-x+1)]dx
=1/3*ln|x+1|-1/6*∫(2x-4)/(x²-x+1)dx
=1/3*ln|x+1|-1/6*∫(2x-1)/(x²-x+1)dx+1/2*∫1/(x²-x+1)dx
=1/3*ln|x+1|-1/6*ln(x²-x+1)+1/2*∫1/[(x-1/2)²+(√3/2)²]d(x-1/2)
=1/3*ln|x+1|-1/6*ln(x²-x+1)+1/2*√3/2*arctan[(x-1)/(√3/2)]+C
=1/3*ln|x+1|-1/6*ln(x²-x+1)+1/√3*arctan(2x-1)/√3+C
追答
其中
∫1/(x²+a²)dx
(x=atanu)
=∫1/a²sec²u*asec²udu
=1/a*u+C
=1/a*arctanx/a+C
ln|x²-x+1|绝对值可以直接去掉,x²-x+1=(x-1/2)²+3/4>0
那里写错了是2/√3
1/2*2/√3*arctan[(x-1)/(√3/2)]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询