求曲线围成的图形面积:ρ=2acosθ
具体回答如图:
特殊值标记下来可以很快的绘出图形大致的形状,从而迅速判断大致的积分区间。
比如本题,cosθ在-π/2、π/2的值均为0,那么(-π/2→π/2)区间的曲线必然是闭合的,然后绘图发现本曲线有左右两个闭合区域,所以可以推断其中一个的积分区间为(-π/2→π/2)。
扩展资料:
设Oxyz是欧氏空间E3中的笛卡儿直角坐标系,r为曲线C上点的向径,于是有。上式称为曲线C的参数方程,t称为曲线C的参数,并且按照参数增加的方向自然地确定了曲线C的正向。曲线论中常讨论正则曲线,即其三个坐标函数x(t),y(t),z(t)的导数均连续且对任意t不同时为零的曲线。
对于正则曲线,总可取其弧长s作为参数,它称为自然参数或弧长参数。弧长参数s用 来定义,它表示曲线C从r(α)到r(t)之间的长度,以下还假定曲线C的坐标函数都具有三阶连续导数,即曲线是C3阶的。
故曲率度量了曲线上相邻两点的切向量的夹角关于弧长的变化率。直线的曲率恒为 0。圆周的曲率等于其半径的倒数。当曲线C在p(s)点的曲率k≠0时,在p(s)点的主法线上沿n(s)的正向取点Q,使得pQ=1/k,在p点的密切平面上以Q为中心。
1/k为半径的圆称为曲线C在p点的曲率圆或密切圆,Q和1/k分别称为曲率中心和曲率半径。密切圆是过曲线C上p(s)点和邻近两点的圆的极限位置。
参考资料来源:百度百科——曲线
x^2+y^2=2ax
(x-a)^2+y^2=a^2
是个圆,面积是pi*a^2
广告 您可能关注的内容 |