如图,已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN垂直于DM且交角CBE的平分线于N。
(1)试说明MD=MN。(2)若将上述条件中的“M是AB的中点”改成“M是AB上的任意一点”,其余条件不变,则结论“MD=MN”成立吗?若成立,请证明;若不成立,请说明理...
(1)试说明MD=MN。
(2)若将上述条件中的“M是AB的中点”改成“M是AB上的任意一点”,其余条件不变,则结论“MD=MN”成立吗?若成立,请证明;若不成立,请说明理由。 展开
(2)若将上述条件中的“M是AB的中点”改成“M是AB上的任意一点”,其余条件不变,则结论“MD=MN”成立吗?若成立,请证明;若不成立,请说明理由。 展开
1个回答
展开全部
(1)在AD上截取AK=AM,则K为AD中点,连接KM,下面证明三角形KMD和BNM是全等的:
角BMN+角AMD=90度,角BMN+角ADM=90度,故角BMN=角ADM;角DKM=180-45=135;
角MBN=180-45=135,故DKM=MBN,且DK=MB,所以KMD和BNM是全等的,故DM=MN。
(2)结论依然成立:同样在AD上截取AK=AM,同样连接KM,同样证明KMD和BNM全等的;
角BMN=角ADM,DK=MB,角DKM=180-45=135,角MBN=180-45=135,故角DKM=角MBN,
所以KMD和BNM是全等的,故DM=MN。
角BMN+角AMD=90度,角BMN+角ADM=90度,故角BMN=角ADM;角DKM=180-45=135;
角MBN=180-45=135,故DKM=MBN,且DK=MB,所以KMD和BNM是全等的,故DM=MN。
(2)结论依然成立:同样在AD上截取AK=AM,同样连接KM,同样证明KMD和BNM全等的;
角BMN=角ADM,DK=MB,角DKM=180-45=135,角MBN=180-45=135,故角DKM=角MBN,
所以KMD和BNM是全等的,故DM=MN。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询