已知数列{an}的前n项和Sn满足:Sn=a/a-1(an-1)(a为常数,且a不等于0,a不等于1)。求数列{an}的
已知数列{an}的前n项和Sn满足:Sn=a/a-1(an-1)(a为常数,且a不等于0,a不等于1)。(1)求数列{an}的通项公式;(2)设bn=2Sn/an+1,若...
已知数列{an}的前n项和Sn满足:Sn=a/a-1(an-1)(a为常数,且a不等于0,a不等于1)。(1)求数列{an}的通项公式;(2)设bn=2Sn/an+1,若{bn}为等比数列,求a的值;(3)在满足(2)的情形下,设cn=1/1+an+1/1-an+1,数列{cn}的前n项和为Tn,求证:Tn大于2n-1/3
尤其是第3问 展开
尤其是第3问 展开
2个回答
展开全部
答: n=1时,a[1]=s[1]=a/(a-1)(a[1]-1),a[1]=a;
a[n+1]=s[n+1]-s[n]=a/(a-1)*(a[n+1]-a[n]),解得:a[n+1]=aa[n],故a[n]=a[1]a^(n-1)=a^n
(2)将a[n]=a^n代入b[n]=(2S[n]/a[n])+1中得:b[n]=(3a-2a^(1-n)-1)/(a-1),若数列{bn}为等比数列,
则b[1],b[2],b[3]必成等比列,由此可推出:a=1/3;
(3)c[n]=1/{1+(1/3)^n}+1/{1-(1/3)^(n+1)}=3^n/(1+3^n)+3^(n+1)/(3^(n+1)-1)=2+1/{3^(n+1)-1}-1/(1+3^n)>2-{1/3^n-1/3^(n+1)}
故T[n]>2n-{1/3-1/3^(n+1)}>2n-1/3
a[n+1]=s[n+1]-s[n]=a/(a-1)*(a[n+1]-a[n]),解得:a[n+1]=aa[n],故a[n]=a[1]a^(n-1)=a^n
(2)将a[n]=a^n代入b[n]=(2S[n]/a[n])+1中得:b[n]=(3a-2a^(1-n)-1)/(a-1),若数列{bn}为等比数列,
则b[1],b[2],b[3]必成等比列,由此可推出:a=1/3;
(3)c[n]=1/{1+(1/3)^n}+1/{1-(1/3)^(n+1)}=3^n/(1+3^n)+3^(n+1)/(3^(n+1)-1)=2+1/{3^(n+1)-1}-1/(1+3^n)>2-{1/3^n-1/3^(n+1)}
故T[n]>2n-{1/3-1/3^(n+1)}>2n-1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询