在三角形ABC中角A,B,C所对边的长分别为a,b,c,若a方+b方=2c方,则cosC的最小值为

帐号已注销
2013-02-06 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6449
采纳率:69%
帮助的人:2111万
展开全部
cosC=(a²+b²-c²)/(2ab),把a²+b²=2c²,代入,消去c²,得cosC=(a²+b²)/(4ab),再用不等式,
因为a²+b²≥2ab,所以cosC=(a²+b²)/(4ab)≥(2ab)/(4ab)=1/2,当a=b时等号成立,所以cosC的最小值为1/2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式