求高三一个数学题,共3小题,见下面图片
展开全部
解:(1)由韦达定理得:α+β=an+1/an ,α•β=1/an ,
由6α-2αβ+6β=3得6•an+1/an -2/an =3,
故an+1=(1/2)an+1/3. .
(2)证明:因为an+1-2/3 =1/2 an-1/3 =1/2 (an-2/3 ),
所以(an+1-2/3)/(an-2/3) =1/2 ,
故数列{an-2/3 }是公比为1/2 的等比数列;
(3)当a1=7/6 时,数列{an-2/3 }的首项a1-2/3 =7/6 -2/3 =1/2 ,
故an-2/3 =1/2 •(1/2 )n-1=(1/2 )n,
于是.an=(1/2 )n+2/3 .
由6α-2αβ+6β=3得6•an+1/an -2/an =3,
故an+1=(1/2)an+1/3. .
(2)证明:因为an+1-2/3 =1/2 an-1/3 =1/2 (an-2/3 ),
所以(an+1-2/3)/(an-2/3) =1/2 ,
故数列{an-2/3 }是公比为1/2 的等比数列;
(3)当a1=7/6 时,数列{an-2/3 }的首项a1-2/3 =7/6 -2/3 =1/2 ,
故an-2/3 =1/2 •(1/2 )n-1=(1/2 )n,
于是.an=(1/2 )n+2/3 .
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询