a∈R, 函数f(x)=x^2+ax-2-lnx,若函数f(x)在【1,+∞】上为增函数,求实数a的取值范围。
展开全部
f'(x)=2x+a-1/x=(2x²+ax-1)/x,其中x>0
若在[1,+∞)上是增函数,则f'(x)≥0在[1,+∞)上恒成立。
即:2x²+ax-1≥0恒成立
∴a²≥(1-2x²)/x在[1,+∞)的最大值
∵g(x)=(1-2x²)/x=-2x+1/x是减函数,∴g(1)为最大值,此时g(1)=(1-2)/1=-1
∴a≥-1
若在[1,+∞)上是增函数,则f'(x)≥0在[1,+∞)上恒成立。
即:2x²+ax-1≥0恒成立
∴a²≥(1-2x²)/x在[1,+∞)的最大值
∵g(x)=(1-2x²)/x=-2x+1/x是减函数,∴g(1)为最大值,此时g(1)=(1-2)/1=-1
∴a≥-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询