如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,

连接EG、AF。(1)求EG的长(2)求证:CF=AB+AF... 连接EG、AF。(1)求EG的长(2)求证:CF=AB+AF 展开
4Salsy
2013-02-10 · TA获得超过982个赞
知道小有建树答主
回答量:114
采纳率:0%
帮助的人:139万
展开全部
(1)解:∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= DB2+CD2 =2 2 ,
∵CE⊥BE,点G为BC的中点,
∴EG=1 2 BC= 2 .
答:EG的长是 2 .
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
(解法二)证明:延长BA与CD延长线交于M,
∵△BFE和△CFD中,
∠BEF=∠CDF=90°,∠BFE=∠CFD,
∴∠MBD=∠FCD,
∵△BCD中∠DCB=45°,BD⊥CD,
∴BD=CD,
△BMD和△CFD中,
∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,
∴△BMD≌△CFD,
∴CF=BM=AB+AM,DM=DF,
∵AD∥BC,∠ADF=∠DBC=45°∠BDM=90°,
∴∠ADM=∠ADF=45°,
∴△AFD≌△AMD,
∴AM=AF,
∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
匿名用户
2013-02-11
展开全部
EG=BG=CG=根号2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式