设S1=1+1/1∧2+1/2∧2,S2=1+1/2∧2+1/3∧2,S3=1+1/3∧3+1/4∧
设S1=1+1/1∧2+1/2∧2,S2=1+1/2∧2+1/3∧2,S3=1+1/3∧3+1/4∧2,…,Sn=1+1/n∧2+1/(n+1)∧2设S=√S1+√S2+...
设S1=1+1/1∧2+1/2∧2,S2=1+1/2∧2+1/3∧2,S3=1+1/3∧3+1/4∧2,…,Sn=1+1/n∧2+1/(n+1)∧2设S=√S1+√S2+…+Sn,求S(用含n的代数式表示,其中n为正整数)。
展开
1个回答
展开全部
∵sn=1+[n^2+(n+1)^2]/[n²(n+1)²]=(n^2+n+1)^2/[n²(n+1)²]
∴√sn=(n^2+n+1)/[n(n+1)]=1+1/n-1/(n+1)
∴s=(1+1-1/2)+(1+1/2-1/3)+(1+1/3-1/4)+……+[1+1/n-1/(n+1)]
=n+(1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1))
=n+(1-1/(n+1))=n+1-1/(n+1)
∴√sn=(n^2+n+1)/[n(n+1)]=1+1/n-1/(n+1)
∴s=(1+1-1/2)+(1+1/2-1/3)+(1+1/3-1/4)+……+[1+1/n-1/(n+1)]
=n+(1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1))
=n+(1-1/(n+1))=n+1-1/(n+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询