设数列{an}的前n项和为Sn=2^(n+1)-2,{bn}是公差不为0的等差数列,其中b2,b4,b9依次成等比数列,且a2=b2,
(1)求数列{an}和{bn}的通项公式(2)设Cn=bn/an,求数列{Cn}的前n项和Tn...
(1)求数列{an}和{bn}的通项公式
(2)设Cn=bn/an,求数列{Cn}的前n项和Tn 展开
(2)设Cn=bn/an,求数列{Cn}的前n项和Tn 展开
展开全部
a1=s1=2^(1+1)-2=2
n>=2时,an=sn-s(n-1)=2^(n+1)-2-2^(n+1-1)+2=2^n
综合a1=2,所以,通项公式为:an=2^n
b2=a2=2^2=4
设公差为d,则有:
b4=b2+2d=4+2d
b9=b2+7d=4+7d
(4+2d)^2=4*(4+7d)
16+16d+4d^2=16+28d
d^2-3d=0
d(d-3)=0
d=3(因为公差不为0)
b1=b2-d=4-3=1
bn=b1+(n-1)d=1+(n-1)*3=3n-2
cn=(3n-2)/2^n.
tn=(3*1-2)/2^1+(3*2-2)/2^2+...+(3*n-2)/2^n (1)
2tn=(3*1-2)/2^0+(3*2-2)/2^1+...+(3*n-2)/2^(n-1) (2)
(2)-(1)得:
tn=(3*1-2)/2^0+3/2^1+...+3/2^(n-1)-(3*n-2)/2^n
=3/2^0+3/2^1+...+3/2^(n-1)-2-(3n-2)/2^n
=3*(1-2^(-n))/(1-1/2)-2-(3n-2)/2^n
=6-2/2^n-2-(3n-2)/2^n
=4-3n/2^n
n>=2时,an=sn-s(n-1)=2^(n+1)-2-2^(n+1-1)+2=2^n
综合a1=2,所以,通项公式为:an=2^n
b2=a2=2^2=4
设公差为d,则有:
b4=b2+2d=4+2d
b9=b2+7d=4+7d
(4+2d)^2=4*(4+7d)
16+16d+4d^2=16+28d
d^2-3d=0
d(d-3)=0
d=3(因为公差不为0)
b1=b2-d=4-3=1
bn=b1+(n-1)d=1+(n-1)*3=3n-2
cn=(3n-2)/2^n.
tn=(3*1-2)/2^1+(3*2-2)/2^2+...+(3*n-2)/2^n (1)
2tn=(3*1-2)/2^0+(3*2-2)/2^1+...+(3*n-2)/2^(n-1) (2)
(2)-(1)得:
tn=(3*1-2)/2^0+3/2^1+...+3/2^(n-1)-(3*n-2)/2^n
=3/2^0+3/2^1+...+3/2^(n-1)-2-(3n-2)/2^n
=3*(1-2^(-n))/(1-1/2)-2-(3n-2)/2^n
=6-2/2^n-2-(3n-2)/2^n
=4-3n/2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询