如图,在直角△ABC中,∠ACB=90,D是BC边上的一点,AD⊥DE,且DE交AB于点E,CF⊥AB交AD于点G,F为垂足
展开全部
1、
因为∠ACB=90°
所以∠ABC+∠CAB=90°,∠CAD+∠ADC=90°
因为CF⊥AB
所以∠ACF+∠CAB=90°
所以∠ABC=∠ACF
因为AD⊥DE
所以∠BDE+∠ADC=90°
所以∠CAD=∠BDE
因为∠CAD=∠BDE、∠ABC=∠ACF
所以△ACG∽△DBE
2、
过B做BH⊥AD,交AD延长线于H
因为ED⊥AD,BH⊥AD
所以DE/AD=BH/AH
因为CD=BD=BC/2,AC=BC/2
所以AC=CD=BD
因为∠ACB=90°
所以∠BDH=∠ADC=45°,AD=CD*√2
因为BH⊥AH
所以BH=DH=BC*√2/2
因为CD=BD
所以AD/BH=2,即AD=2*BH
因为BH=DH
所以BH/AH=BH/(DH+AH)=BH/(BH+2*BH)=1/3
因为∠ACB=90°
所以∠ABC+∠CAB=90°,∠CAD+∠ADC=90°
因为CF⊥AB
所以∠ACF+∠CAB=90°
所以∠ABC=∠ACF
因为AD⊥DE
所以∠BDE+∠ADC=90°
所以∠CAD=∠BDE
因为∠CAD=∠BDE、∠ABC=∠ACF
所以△ACG∽△DBE
2、
过B做BH⊥AD,交AD延长线于H
因为ED⊥AD,BH⊥AD
所以DE/AD=BH/AH
因为CD=BD=BC/2,AC=BC/2
所以AC=CD=BD
因为∠ACB=90°
所以∠BDH=∠ADC=45°,AD=CD*√2
因为BH⊥AH
所以BH=DH=BC*√2/2
因为CD=BD
所以AD/BH=2,即AD=2*BH
因为BH=DH
所以BH/AH=BH/(DH+AH)=BH/(BH+2*BH)=1/3
展开全部
三角形AGF相似三角形AED,角AGF等于角AED。所以角AGC等于角DEB。角ACF+角FCB=90度,角CBF+角FCB=90度。因为角AGC=角DEB,角ACF=角CBF,所以三角形ACG相似三角形DBE。第一题的答案!
我没有笔,第2题用第一题的相似关系,证明三角形ADE与三角形BCA相似就可以了!用角与角相加等于180的关系就OK了!
我没有笔,第2题用第一题的相似关系,证明三角形ADE与三角形BCA相似就可以了!用角与角相加等于180的关系就OK了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:
∵∠CAB+∠B=90°,CF⊥AB
∴∠CAB+∠ACF=90°
∴∠ACF=∠B
∵AD⊥DE
∴∠BDE+∠ADC=90°
∴∠CAD=∠BDE
∵∠CAD=∠BDE,∠B=∠ACF
∴△ACG∽△DBE
(2)解:
延长AD,做BH⊥AD,垂足为H
∵ED⊥AD,BH⊥AD
∴DE/AD=BH/AH
∵CD=BD=BC/2,AC=BC/2
∴AC=CD=BD
∵∠ACB=90°
∴∠BDH=∠ADC=45°,AD=CD*√2
∵BH⊥AH
∴BH=DH=BC*√2/2
∵CD=BD
∴AD/BH=2,即AD=2*BH
∵BH=DH
∴BH/AH=BH/(DH+AH)=BH/(BH+2*BH)=1/3
∵∠CAB+∠B=90°,CF⊥AB
∴∠CAB+∠ACF=90°
∴∠ACF=∠B
∵AD⊥DE
∴∠BDE+∠ADC=90°
∴∠CAD=∠BDE
∵∠CAD=∠BDE,∠B=∠ACF
∴△ACG∽△DBE
(2)解:
延长AD,做BH⊥AD,垂足为H
∵ED⊥AD,BH⊥AD
∴DE/AD=BH/AH
∵CD=BD=BC/2,AC=BC/2
∴AC=CD=BD
∵∠ACB=90°
∴∠BDH=∠ADC=45°,AD=CD*√2
∵BH⊥AH
∴BH=DH=BC*√2/2
∵CD=BD
∴AD/BH=2,即AD=2*BH
∵BH=DH
∴BH/AH=BH/(DH+AH)=BH/(BH+2*BH)=1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询