直线l的方程:x-2y+3=0与椭圆C1:x^2/4+y^2/3=1相交于A(x1,y1),B(x2,y2),两点,P是抛物线C2:y^2=x上一点

求三角形ABP面积的最小值和P的坐标... 求三角形ABP面积的最小值和P的坐标 展开
西域牛仔王4672747
2013-02-16 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30612 获赞数:146350
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
将 x=2y-3 代入椭圆方程得 (2y-3)^2/4+y^2/3=1 ,
化简得 16y^2-36y+15=0 ,
因此 y1+y2=36/16=9/4 ,y1*y2=15/16 ,
所以 |AB|^2=(x2-x1)^2+(y2-y1)^2=5(y2-y1)^2=5*[(y1+y2)^2-4y1*y2]=5*[(9/4)^2-4*15/16]=105/16 ,
则 |AB|=(√105)/4 ,
设 P(y^2,y)是抛物线上任一点,则 P 到直线 AB 的距离为
d=|y^2-2y+3|/√5=[(y-1)^2+2]/√5 ,
由于 SABP=1/2*|AB|*d ,
所以,当 d 取最小值时,SABP 最小,
所以,当 y=1 即 P(1,1)时,SABP 最小,为 √21/4 。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式