已知圆C1:(x-4)²+y²=13²,圆C2:(x+4)²+y²=3²,
已知圆C1:(x-4)²+y²=13²,圆C2:(x+4)²+y²=3²,动圆C与C1内切同时与C2外切,求动...
已知圆C1:(x-4)²+y²=13²,圆C2:(x+4)²+y²=3²,动圆C与C1内切同时与C2外切,求动圆圆心C的轨迹方程
求过程 展开
求过程 展开
1个回答
2013-02-17 · 知道合伙人教育行家
关注
展开全部
连接 C2C、C1C,并延长 C1C 到与与圆 C1 交于 D ,
设圆 C1、C2、C的半径分别为 r1、r2、r ,
则因为圆 C 与圆 C1 内切,因此 CC1=r1-r ,
因为圆 C 与圆 C2外切,因此 CC2=r2+r ,
形式相加得 CC1+CC2=r1+r2=13+3=16 ,
因此 C 的轨迹是以 C1、C2 为焦点的椭圆,
由于 2a=16 ,2c=8 ,
所以 a^2=64 ,b^2=a^2-c^2=48 ,
因此 C 的轨迹方程为 x^2/64+y^2/48=1 。
设圆 C1、C2、C的半径分别为 r1、r2、r ,
则因为圆 C 与圆 C1 内切,因此 CC1=r1-r ,
因为圆 C 与圆 C2外切,因此 CC2=r2+r ,
形式相加得 CC1+CC2=r1+r2=13+3=16 ,
因此 C 的轨迹是以 C1、C2 为焦点的椭圆,
由于 2a=16 ,2c=8 ,
所以 a^2=64 ,b^2=a^2-c^2=48 ,
因此 C 的轨迹方程为 x^2/64+y^2/48=1 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询