1个回答
2018-07-21
展开全部
lim∫ (sint^2/t)dt/(ax^b) (罗必塔法则) = lim{[1-1/(1+x)]sin[x-ln(1+x)]^2/[x-ln(1+x)]}/[abx^(b-1)] = lim{[x/(1+x)][x-ln(1+x)]}/[abx^(b-1)] = lim[x-ln(1+x)]/[abx^(b-2)] (罗必塔法则) = lim[1-1/(1+x)]/[ab(b-2)x^(b-3)] = lim1/[ab(b-2)x^(b-4)] = 1 b = 4, ab(b-2) = 1, a = 1/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询