化简sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)求答案
2个回答
展开全部
解sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)
=sin²(α)·(-cos(α))·(-cot(α+2π))/(tan(α))·cos²(α)
=sin²(α)·cos(α)·cot(α+2π)/(tan(α))·cos²(α)
=sin²(α)·cos(α)·cot(α)/(tan(α))·cos²(α)
=sin²(α)·cos(α)/(tan²(α)·cos²(α)
=sin²(α)·cos(α)/tan²(α)·cos²(α)
=sin²(α)·cos(α)/[sin²(α)/cos²a·cos²(α)]
=sin²(α)·cos(α)/[sin²(α)]
=cosa
=sin²(α)·(-cos(α))·(-cot(α+2π))/(tan(α))·cos²(α)
=sin²(α)·cos(α)·cot(α+2π)/(tan(α))·cos²(α)
=sin²(α)·cos(α)·cot(α)/(tan(α))·cos²(α)
=sin²(α)·cos(α)/(tan²(α)·cos²(α)
=sin²(α)·cos(α)/tan²(α)·cos²(α)
=sin²(α)·cos(α)/[sin²(α)/cos²a·cos²(α)]
=sin²(α)·cos(α)/[sin²(α)]
=cosa
追问
您好,答案上的得数是-1,您确定是对的吗?
追答
确认
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询