有关积分的问题
展开全部
let
t= tan(x/2)
dt = (1/2)[sec(x/2)]^2 dx
dx = 2dt/(1+t^2)
x=0, t=0
x=π , t=+∞
t^2 =[ tan(x/2)]^2
[ sec(x/2)]^2 = 1+t^2
[cos(x/2)]^2 = 1/(1+t^2)
cosx = 2[cos(x/2)]^2 -1 = (1-t^2)/(1+t^2)
∫(0->π) (1+2cosx)/(5+4cosx) dx
=(1/2)∫(0->π) (5+4cosx)/(5+4cosx) dx - (3/2)∫(0->π) dx/(5+4cosx)
=π/2 -(3/2)∫(0->π) dx/(5+4cosx)
=π/2 -(3/2)∫(0->+∞) [2dt/(1+t^2) ]/{ 5+[4(1-t^2)/(1+t^2)] }
=π/2 -3∫(0->+∞) dt/[ 5(1+t^2)+4(1-t^2) ]
=π/2 -3∫(0->+∞) dt/(9+t^2)
=π/2 -3∫(0->+∞) dt/(9+t^2)
=π/2 - [ arctan(t/3) ]|(0->+∞)
=π/2 - π/2
=0
t= tan(x/2)
dt = (1/2)[sec(x/2)]^2 dx
dx = 2dt/(1+t^2)
x=0, t=0
x=π , t=+∞
t^2 =[ tan(x/2)]^2
[ sec(x/2)]^2 = 1+t^2
[cos(x/2)]^2 = 1/(1+t^2)
cosx = 2[cos(x/2)]^2 -1 = (1-t^2)/(1+t^2)
∫(0->π) (1+2cosx)/(5+4cosx) dx
=(1/2)∫(0->π) (5+4cosx)/(5+4cosx) dx - (3/2)∫(0->π) dx/(5+4cosx)
=π/2 -(3/2)∫(0->π) dx/(5+4cosx)
=π/2 -(3/2)∫(0->+∞) [2dt/(1+t^2) ]/{ 5+[4(1-t^2)/(1+t^2)] }
=π/2 -3∫(0->+∞) dt/[ 5(1+t^2)+4(1-t^2) ]
=π/2 -3∫(0->+∞) dt/(9+t^2)
=π/2 -3∫(0->+∞) dt/(9+t^2)
=π/2 - [ arctan(t/3) ]|(0->+∞)
=π/2 - π/2
=0
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
太难了,同样想学习一下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
后面就是裂项了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询