已知数列{an}(n∈N*),若a1=1,an+1+an=(1/2)^n,则lima2n=______,用 累加法 如何计算?
1个回答
展开全部
a(n+1)+an=(1/2)^n
a(n+1) - (2/3).(1/2)^(n+1) = - [ an -(2/3) (1/2)^n ]
=>{ an -(2/3) (1/2)^n } 是等比数列, q=-1
an -(2/3) (1/2)^n =(-1)^(n-1) . [a1 -(2/3) (1/2)]
= (2/3).(-1)^(n-1)
an =(2/3) (1/2)^n + (2/3).(-1)^(n-1)
a(2n)= (2/3) (1/2)^(2n) - 2/3
lim(n->∞) a(2n)
=lim(n->∞) [ (2/3) (1/2)^(2n) - 2/3 ]
=-2/3
a(n+1) - (2/3).(1/2)^(n+1) = - [ an -(2/3) (1/2)^n ]
=>{ an -(2/3) (1/2)^n } 是等比数列, q=-1
an -(2/3) (1/2)^n =(-1)^(n-1) . [a1 -(2/3) (1/2)]
= (2/3).(-1)^(n-1)
an =(2/3) (1/2)^n + (2/3).(-1)^(n-1)
a(2n)= (2/3) (1/2)^(2n) - 2/3
lim(n->∞) a(2n)
=lim(n->∞) [ (2/3) (1/2)^(2n) - 2/3 ]
=-2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询