如图,正三角形ABC的边长为3+根号3 . 10
如图,正三角形ABC的边长为3+根号3(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的...
如图,正三角形ABC的边长为3+根号3
(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由. 展开
(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由. 展开
3个回答
展开全部
.根号掉了
(2)设正方形E′F′P′N′的边长为x,
∵△ABC为正三角形,
∴AE′=BF′=33x.
∵E′F′+AE′+BF′=AB,
∴x+33x+33x=3+3,
∴x=9+3
32
3+3,即x=33-3,
(没有分母有理化也对,x≈2.20也正确)
(3)如图②,连接NE、EP、PN,则∠NEP=90°.
设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),
它们的面积和为S,则NE=2m,PE=2n.
∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).
∴S=m2+n2=12PN2,
延长PH交ND于点G,则PG⊥ND.
在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m-n)2.
∵AD+DE+EF+BF=AB,即33m+m+n+33n=3+3,化简得m+n=3.
∴S=12[32+(m-n)2]=92+12(m-n)2
①当(m-n)2=0时,即m=n时,S最小.
∴S最小=92;
②当(m-n)2最大时,S最大.
即当m最大且n最小时,S最大.
∵m+n=3,
由(2)知,m最大=33-3.
∴S最大=12[9+(m最大-n最小)2]
=12[9+(33-3-6+33)2]
=99-543….
(S最大≈5.47也正确)
http://www.jyeoo.com/math/ques/detail/5092485b-6d5b-4ae6-b899-866d25dd7673
(2)设正方形E′F′P′N′的边长为x,
∵△ABC为正三角形,
∴AE′=BF′=33x.
∵E′F′+AE′+BF′=AB,
∴x+33x+33x=3+3,
∴x=9+3
32
3+3,即x=33-3,
(没有分母有理化也对,x≈2.20也正确)
(3)如图②,连接NE、EP、PN,则∠NEP=90°.
设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),
它们的面积和为S,则NE=2m,PE=2n.
∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).
∴S=m2+n2=12PN2,
延长PH交ND于点G,则PG⊥ND.
在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m-n)2.
∵AD+DE+EF+BF=AB,即33m+m+n+33n=3+3,化简得m+n=3.
∴S=12[32+(m-n)2]=92+12(m-n)2
①当(m-n)2=0时,即m=n时,S最小.
∴S最小=92;
②当(m-n)2最大时,S最大.
即当m最大且n最小时,S最大.
∵m+n=3,
由(2)知,m最大=33-3.
∴S最大=12[9+(m最大-n最小)2]
=12[9+(33-3-6+33)2]
=99-543….
(S最大≈5.47也正确)
http://www.jyeoo.com/math/ques/detail/5092485b-6d5b-4ae6-b899-866d25dd7673
展开全部
(2)设正方形E′F′P′N′的边长为x,
∵△ABC为正三角形,
∴AE′=BF′=33x.
∵E′F′+AE′+BF′=AB,
∴x+33x+33x=3+3,
∴x=9+3
32
3+3,即x=33-3,
(没有分母有理化也对,x≈2.20也正确)
(3)如图②,连接NE、EP、PN,则∠NEP=90°.
设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),
它们的面积和为S,则NE=2m,PE=2n.
∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).
∴S=m2+n2=12PN2,
延长PH交ND于点G,则PG⊥ND.
在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m-n)2.
∵AD+DE+EF+BF=AB,即33m+m+n+33n=3+3,化简得m+n=3.
∴S=12[32+(m-n)2]=92+12(m-n)2
①当(m-n)2=0时,即m=n时,S最小.
∴S最小=92;
②当(m-n)2最大时,S最大.
即当m最大且n最小时,S最大.
∵m+n=3,
由(2)知,m最大=33-3.
∴S最大=12[9+(m最大-n最小)2]
=12[9+(33-3-6+33)2]
=99-543….
∵△ABC为正三角形,
∴AE′=BF′=33x.
∵E′F′+AE′+BF′=AB,
∴x+33x+33x=3+3,
∴x=9+3
32
3+3,即x=33-3,
(没有分母有理化也对,x≈2.20也正确)
(3)如图②,连接NE、EP、PN,则∠NEP=90°.
设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),
它们的面积和为S,则NE=2m,PE=2n.
∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).
∴S=m2+n2=12PN2,
延长PH交ND于点G,则PG⊥ND.
在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m-n)2.
∵AD+DE+EF+BF=AB,即33m+m+n+33n=3+3,化简得m+n=3.
∴S=12[32+(m-n)2]=92+12(m-n)2
①当(m-n)2=0时,即m=n时,S最小.
∴S最小=92;
②当(m-n)2最大时,S最大.
即当m最大且n最小时,S最大.
∵m+n=3,
由(2)知,m最大=33-3.
∴S最大=12[9+(m最大-n最小)2]
=12[9+(33-3-6+33)2]
=99-543….
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
人在吗 我给你发个网址
如果在情M
如果在情M
追问
在,你发吧
追答
在百度上搜索菁优网 建个号就能看了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询