用数学归纳法证明1^3+2^3+3^3+...+n^3=n^2(n+1)^2 / 4 = (1+2+3+...+n)^2(n是正整数)

高二数学。... 高二数学。 展开
louyongzy
2013-02-20 · TA获得超过715个赞
知道小有建树答主
回答量:154
采纳率:0%
帮助的人:151万
展开全部
n=1,代入验证,省略
假设n=k成立,k>=1
1^3+2^3+3^3+...+k^3=k^2(k+1)^2/4
则n=k+1
1^3+2^3+3^3+...+k^3+(k+1)^3
=k^2(k+1)^2/4+(k+1)^3
=(k+1)^2*[k^2+4(k+1)]/4
=(k+1)^2*(k+2)^2/4
=(k+1)^2*[(k+1)+1]^2/4
综上
1^3+2^3+3^3+...+n^3=n^2(n+1)^2/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式