已知函数f(x)=1/3×^3-ax^2+b在x=-2处有极值.
(1)求函数f(x)的单调区间(2)若函数f(x)在【-3,3】上有且仅有一个零点,求b的取值范围...
(1)求函数f(x)的单调区间(2)若函数f(x)在【-3,3】上有且仅有一个零点,求b的取值范围
展开
2个回答
展开全部
(1)f ‘(x)=ײ-2ax
∵函数在x=-2处有极值, ∴ f ’(2)=0
∴(-2)²-2a(-2)=0
解得 a=-1
∴ 解析式化为 f(x)=1/3×^3+x^2+b
令 f ‘(x)=ײ+2x=x(x+2)=0 得 x=0 或x=-2
当x<-2时 f‘(x)>0 ∴在(-∞,-2)上单调递增
当-2<x<0 时 f ’(x)<0 ∴在 (-2, 0)上单调递减
当 x>0时 f‘(x)>0, ∴在 (0,+∞)上单调递增
(2)因为函数在{-3,3}上有零点,所以f(-3)*f(3)<0
即〔1/3(-3)³+(-3)²+b〕×〔1/3×3³+3²+b〕<0
解得 -18<b<0 即为所求
∵函数在x=-2处有极值, ∴ f ’(2)=0
∴(-2)²-2a(-2)=0
解得 a=-1
∴ 解析式化为 f(x)=1/3×^3+x^2+b
令 f ‘(x)=ײ+2x=x(x+2)=0 得 x=0 或x=-2
当x<-2时 f‘(x)>0 ∴在(-∞,-2)上单调递增
当-2<x<0 时 f ’(x)<0 ∴在 (-2, 0)上单调递减
当 x>0时 f‘(x)>0, ∴在 (0,+∞)上单调递增
(2)因为函数在{-3,3}上有零点,所以f(-3)*f(3)<0
即〔1/3(-3)³+(-3)²+b〕×〔1/3×3³+3²+b〕<0
解得 -18<b<0 即为所求
来自:求助得到的回答
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
1)f ‘(x)=ײ-2ax
∵函数在x=-2处有极值, ∴ f ’(2)=0
∴(-2)²-2a(-2)=0
解得 a=-1
∴ 解析式化为 f(x)=1/3×^3+x^2+b
令 f ‘(x)=ײ+2x=x(x+2)=0 得 x=0 或x=-2
当x<-2时 f‘(x)>0 ∴在(-∞,-2)上单调递增
当-2<x<0 时 f ’(x)<0 ∴在 (-2, 0)上单调递减
当 x>0时 f‘(x)>0, ∴在 (0,+∞)上单调递增
(2)因为函数在{-3,3}上有零点,所以f(-3)*f(3)<0
即〔1/3(-3)³+(-3)²+b〕×〔1/3×3³+3²+b〕<0
解得 -18<b<0 即为所求
∵函数在x=-2处有极值, ∴ f ’(2)=0
∴(-2)²-2a(-2)=0
解得 a=-1
∴ 解析式化为 f(x)=1/3×^3+x^2+b
令 f ‘(x)=ײ+2x=x(x+2)=0 得 x=0 或x=-2
当x<-2时 f‘(x)>0 ∴在(-∞,-2)上单调递增
当-2<x<0 时 f ’(x)<0 ∴在 (-2, 0)上单调递减
当 x>0时 f‘(x)>0, ∴在 (0,+∞)上单调递增
(2)因为函数在{-3,3}上有零点,所以f(-3)*f(3)<0
即〔1/3(-3)³+(-3)²+b〕×〔1/3×3³+3²+b〕<0
解得 -18<b<0 即为所求
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询