小学奥数七大模块的主要知识点
2个回答
展开全部
模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程
模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值
模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图
模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法
模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草
模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数
模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独
模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值
模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图
模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法
模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草
模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数
模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)包括了“速算与巧算、大小比较、估算、定义新运算”这四部分主要内容。
(2)整体计算部分涉及的难度范围很广,例如平方和、立方和等公式初高中也会接触,包括裂项法、放缩法等知识点也可以延伸到初高中。所以家长们根据孩子学习需求进行学习。
二、数论体系
(1)整体分为“除尽”和“除不尽”两大部分,包括“整除问题、约倍问题、带余除法、同余问题、余数性质、物不知其数”等几部分内容。
(2)整除部分的两大内容关系密切,与课本内容关联性大,基础题型难度不大,适用于大部分适龄学生。
(3)数论部分经常与计数结合,此时难度会明显增加,尤其是数论中的相关公式,对于普通适龄学生理解上会有难度,若学生有排列组合的基础,在公式的推导和理解上相对就比较容易。家长也要根据学生学习的程度和学习需求来安排这个板块的学习。
三、计数体系
(1)包括“加乘原理、排列组合、抽屉原理、容斥原理与概率问题”几部分内容。
(2)对于计数板块的内容的深入学习通常是到高中才展开,有些甚至到文理分科后才学习,但是小学奥数阶段涉及的计数问题通常相对比较基础,不过对普通学生理解上存在较大难度,对于竞赛类的学生这部分内容还是需要熟练掌握,尤其是排列组合。
四、几何体系
(1)包含“直线型、曲线型及立体几何”三大部分的内容。
(2)“立体几何”中的表面积和体积与小学同步课程关联性大,通常难度不会太深,适合适龄学生学习,掌握程度相对也较高,“染色问题”更加考验学生空间感,难度跨度比较大;“五大模型”和“曲线型几何”的推导中会用到较多的比例和相似,对于图形基础比较好的学生理解起来难度适中,家长在辅导孩子这部分内容时要根据孩子情况控制好难度,更加要注重方法的讲解。
五、应用题体系
(1)包括了三四年级适用的“和差倍问题、年龄问题、植树问题、方阵问题、鸡兔同笼问题、盈亏问题”以及五六年级适用的“经济问题、浓度问题、工程问题、牛吃草问题、分数百分数问题”。
(2)三四年级适用的几大类的问题难度不大,即使启蒙晚一些的孩子基本四五年级之后也能掌握,并且与课本关联性也大,适于大部分学生学习;“经济、浓度、工程、分数百分数”这几个部分的问题也五六年级同步课程关联性也比较紧密,但是在奥数思维中难度会明显增加,如果孩子没有较好的奥数基础,还是要在孩子课本内容掌握扎实之后选择性地给孩子学习提高,“牛吃草问题”相对是比较经经典的一个问题,拓展或者小升初中遇到的比较多,不过与小学课本联系较少,可根据孩子学习需求进行选择。
(2)整体计算部分涉及的难度范围很广,例如平方和、立方和等公式初高中也会接触,包括裂项法、放缩法等知识点也可以延伸到初高中。所以家长们根据孩子学习需求进行学习。
二、数论体系
(1)整体分为“除尽”和“除不尽”两大部分,包括“整除问题、约倍问题、带余除法、同余问题、余数性质、物不知其数”等几部分内容。
(2)整除部分的两大内容关系密切,与课本内容关联性大,基础题型难度不大,适用于大部分适龄学生。
(3)数论部分经常与计数结合,此时难度会明显增加,尤其是数论中的相关公式,对于普通适龄学生理解上会有难度,若学生有排列组合的基础,在公式的推导和理解上相对就比较容易。家长也要根据学生学习的程度和学习需求来安排这个板块的学习。
三、计数体系
(1)包括“加乘原理、排列组合、抽屉原理、容斥原理与概率问题”几部分内容。
(2)对于计数板块的内容的深入学习通常是到高中才展开,有些甚至到文理分科后才学习,但是小学奥数阶段涉及的计数问题通常相对比较基础,不过对普通学生理解上存在较大难度,对于竞赛类的学生这部分内容还是需要熟练掌握,尤其是排列组合。
四、几何体系
(1)包含“直线型、曲线型及立体几何”三大部分的内容。
(2)“立体几何”中的表面积和体积与小学同步课程关联性大,通常难度不会太深,适合适龄学生学习,掌握程度相对也较高,“染色问题”更加考验学生空间感,难度跨度比较大;“五大模型”和“曲线型几何”的推导中会用到较多的比例和相似,对于图形基础比较好的学生理解起来难度适中,家长在辅导孩子这部分内容时要根据孩子情况控制好难度,更加要注重方法的讲解。
五、应用题体系
(1)包括了三四年级适用的“和差倍问题、年龄问题、植树问题、方阵问题、鸡兔同笼问题、盈亏问题”以及五六年级适用的“经济问题、浓度问题、工程问题、牛吃草问题、分数百分数问题”。
(2)三四年级适用的几大类的问题难度不大,即使启蒙晚一些的孩子基本四五年级之后也能掌握,并且与课本关联性也大,适于大部分学生学习;“经济、浓度、工程、分数百分数”这几个部分的问题也五六年级同步课程关联性也比较紧密,但是在奥数思维中难度会明显增加,如果孩子没有较好的奥数基础,还是要在孩子课本内容掌握扎实之后选择性地给孩子学习提高,“牛吃草问题”相对是比较经经典的一个问题,拓展或者小升初中遇到的比较多,不过与小学课本联系较少,可根据孩子学习需求进行选择。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询