展开全部
小学数学教材对互质数是这样定义的:“只有公约数只有1的两个自然数,叫做互质数。”
这里所说的“两个数”是指自然数。
“公约数只有
1”,不能误说成“没有公约数。”
判别方法:
(1)两个不相同质数一定是互质数。
例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。
例如,3与10、5与
26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如
15与
16。
(5)相邻的两个奇数是互质数。如
49与
51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如
7和
16。
(8)2和任何奇数是互质数。如2和87。
(9)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(10)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。
85-78=7,7不是78的约数,这两个数是互质数。
(11)两个数都是合数,大数除以小数的余数(不为“0”且大于“
1”)的所有质因数,都不是小数的约数,这两个数是互质数。如
462与
221
462÷221=2……20,
20=2×2×5。
2、5都不是221的约数,这两个数是互质数。
(12)减除法。如255与182。
255-182=73,观察知
73<182。
182-(73×2)=36,显然
36<73。
73-(36×2)=1,
(255,182)=1。
所以这两个数是互质数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、4。另一种不是两两互质的。如6、8、9。
概念:两个正整数,除了1以外,没有其他公约数时,称这两个数为互质数.
这里所说的“两个数”是指自然数。
“公约数只有
1”,不能误说成“没有公约数。”
判别方法:
(1)两个不相同质数一定是互质数。
例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。
例如,3与10、5与
26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如
15与
16。
(5)相邻的两个奇数是互质数。如
49与
51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如
7和
16。
(8)2和任何奇数是互质数。如2和87。
(9)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(10)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。
85-78=7,7不是78的约数,这两个数是互质数。
(11)两个数都是合数,大数除以小数的余数(不为“0”且大于“
1”)的所有质因数,都不是小数的约数,这两个数是互质数。如
462与
221
462÷221=2……20,
20=2×2×5。
2、5都不是221的约数,这两个数是互质数。
(12)减除法。如255与182。
255-182=73,观察知
73<182。
182-(73×2)=36,显然
36<73。
73-(36×2)=1,
(255,182)=1。
所以这两个数是互质数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、4。另一种不是两两互质的。如6、8、9。
概念:两个正整数,除了1以外,没有其他公约数时,称这两个数为互质数.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询