[e^(x+y)-e^x]dx+[e^(x+y)+e^y]dy=0 的特解

 我来答
茹翊神谕者

2021-07-16 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1622万
展开全部

简单计算一下即可,答案如图所示

苍勤妫玛丽
2020-01-19 · TA获得超过3766个赞
知道大有可为答主
回答量:3063
采纳率:32%
帮助的人:173万
展开全部
是求通解吧!若如此,则方法如下:
∵[e^(x+y)-e^x]dx+[e^(x+y)+e^y]dy=0,
∴e^(x+y)dx-e^xdx+e^(x+y)dy+e^ydy=0,
∴e^(x+y)(dx+dy)-d(e^x)+d(e^y)=0,
∴e^(x+y)d(x+y)+d(e^y-e^x)=0,
∴d[e^(x+y)]=d(e^x-e^y),
∴e^(x+y)=e^x-e^y+C。
∴原微分方程的通解是:e^(x+y)=e^x-e^y+C。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式