
设abc∈R且a+b+c=1,求证a²+b²+c²≥1/3
2个回答
展开全部
(a-b)²+(b-c)²+(c-a)²≥0
则:
a²+b²+c²≥ab+bc+ca
又:
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)≤(a²+b²+c²)+2(a²+b²+c²)=3(a²+b²+c²)
得:
a²+b²+c²≥(1/3)(a+b+c)²
因:a+b+c=1
则:a²+b²+c²≥1/3
则:
a²+b²+c²≥ab+bc+ca
又:
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)≤(a²+b²+c²)+2(a²+b²+c²)=3(a²+b²+c²)
得:
a²+b²+c²≥(1/3)(a+b+c)²
因:a+b+c=1
则:a²+b²+c²≥1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询