2个回答
展开全部
f(x)=cos²x -√3sinxcosx +1
=(1+cos2x)/2-(√3/2)sin2x +1
=sin(π/6 - 2x)+3/2
因为,f(a)=5/6
所以,sin(π/6 -2a)+3/2=5/6
即,sin(2a-π/6)=2/3
因为,π/3≤a≤2π/3
所以, π/2≤2a-π/6≤7π/6
所以,cos(2a-π/6)=-(√5)/3
sin2a=sin[(2a-π/6)+(π/6)]
=sin(2a-π/6)cos(π/6)+cos(2a-π/6)sin(π/6)
=(2/3)×(√3/2)+(-√5/3)×(1/2)
=(√3/3)-(√5/6)
=(2√3 -√5)/6
=(1+cos2x)/2-(√3/2)sin2x +1
=sin(π/6 - 2x)+3/2
因为,f(a)=5/6
所以,sin(π/6 -2a)+3/2=5/6
即,sin(2a-π/6)=2/3
因为,π/3≤a≤2π/3
所以, π/2≤2a-π/6≤7π/6
所以,cos(2a-π/6)=-(√5)/3
sin2a=sin[(2a-π/6)+(π/6)]
=sin(2a-π/6)cos(π/6)+cos(2a-π/6)sin(π/6)
=(2/3)×(√3/2)+(-√5/3)×(1/2)
=(√3/3)-(√5/6)
=(2√3 -√5)/6
展开全部
解:
f(x)=cos²x-√3sinxcosx+1
=(1+cos2x)/2-(√3/2)sin2x+1
=1/2+(1/2)cos2x-(√3/2)sin2x+1
=3/2+sin(π/6)cos2x-cos(π/6)sin2x
=3/2+sin(π/6-2x)
=3/2-sin(2x-π/6)
因此:
f(a)=3/2-sin(2a-π/6)=5/6
∴sin(2a-π/6)=2/3
又∵π/3≤a≤2π/3
∴π/2≤2a-π/6≤7π/6
因此:
2a-π/6=π-arcsin(2/3)
∴2a=7π/6-arcsin(2/3)
sin2a=sin[7π/6-arcsin(2/3)]
=-sin[π/6-arcsin(2/3)]
=-sin(π/6)cos[arcsin(2/3)]+cos(π/6)sin[arcsin(2/3)]
=-(1/2)*(√5/3)+(√3/2)*(2/3)
=(2√3-√5)/6
f(x)=cos²x-√3sinxcosx+1
=(1+cos2x)/2-(√3/2)sin2x+1
=1/2+(1/2)cos2x-(√3/2)sin2x+1
=3/2+sin(π/6)cos2x-cos(π/6)sin2x
=3/2+sin(π/6-2x)
=3/2-sin(2x-π/6)
因此:
f(a)=3/2-sin(2a-π/6)=5/6
∴sin(2a-π/6)=2/3
又∵π/3≤a≤2π/3
∴π/2≤2a-π/6≤7π/6
因此:
2a-π/6=π-arcsin(2/3)
∴2a=7π/6-arcsin(2/3)
sin2a=sin[7π/6-arcsin(2/3)]
=-sin[π/6-arcsin(2/3)]
=-sin(π/6)cos[arcsin(2/3)]+cos(π/6)sin[arcsin(2/3)]
=-(1/2)*(√5/3)+(√3/2)*(2/3)
=(2√3-√5)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询