24.★★★如图1,点O为直线AB上一点,

如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中... 如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 ————(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM-∠NOC的度数。
展开
天秤Shadow
2013-02-24 · TA获得超过226个赞
知道答主
回答量:140
采纳率:0%
帮助的人:120万
展开全部
1、平分。因为OM平分∠BOC,∠BOC=120°,所以∠MOB=60°,∠AOC=60°。因为直角三角板,所以∠BON=30°。因为直线ON上,∠MOC=90+60=150,所以∠CO#=30°(虚线一侧)。所以∠CO#=½∠∠AOC。所以直线ON是否平分∠AOC。
2、由题意知三角板旋转了240°,所以t=240/6=40秒。
3、∠AOM最大为90°,最小为30°,∠NOC最大为60°,最小为0°。所以∠AOM-∠NOC的度数范围为0~90°。
瞎忙活了半天,也不知道做得最不对。仅供参考。。。
947866440
2013-02-24 · TA获得超过2300个赞
知道答主
回答量:82
采纳率:0%
帮助的人:24.1万
展开全部
解:(1)直线ON平分∠AOC.理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(对顶角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,
即直线ON平分∠AOC.

(2)∵∠BOC=120°
∴∠AOC=60°,
∴∠BON=∠COD=30°,
即旋转60°时ON平分∠AOC,
由题意得,6t=60°或240°,
∴t=10或40;

(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式