F1,F2分别为双曲线x²/a²-y²/b²=1(a>0,b>0)左右焦点,P为双曲线左支上的任意一点,若|

F1,F2分别为双曲线x²/a²-y²/b²=1(a>0,b>0)左右焦点,P为双曲线左支上的任意一点,若|PF2|²/... F1,F2分别为双曲线x²/a²-y²/b²=1(a>0,b>0)左右焦点,P为双曲线左支上的任意一点,若|PF2|²/|PF1|最小值为8a,求双曲线的离心率e的取值范围 展开
杪灬右开萨猫0J
推荐于2020-12-19 · TA获得超过6148个赞
知道小有建树答主
回答量:1197
采纳率:0%
帮助的人:439万
展开全部
由定义知:|PF2|—|PF1|=2a
|PF2|=2a+|PF1|
|PF2|^2/|PF1|=(2a+|PF1|)^2/|PF1|
=4a^2/|PF1|+ 4a+ |PF1|≥8a
当且仅当 4a^2/|PF1|=|PF1|,即 |PF1|=2a时取得等号

设P(x0,y0) (x0≤-a)
依焦半径公式得:
|PF1|=-e*x0-a=2a
e*x0=-2a
e=-3a/x0≤3, 又双曲线的 e>1
故:e属于(1,3]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式