a不可逆的充要条件
1个回答
展开全部
A矩阵不可逆的条件有如下7种:
1.|A| = 0
2.A的列(行)向量组线性相关
3.R(A)<n
4.AX=0 有非零解
5.A有特征值0
6.A不能表示成初等矩阵的乘积
7.A的等价标准形不是单位矩阵
扩展资料
可逆矩阵的性质:
1.可逆矩阵一定是方阵。
2.如果矩阵A是可逆的,其逆矩阵是唯一的。
3.A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4.可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5.若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6.两个可逆矩阵的乘积依然可逆。
7.矩阵可逆当且仅当它是满秩矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询