基础解系所含解向量的个数是什么?

 我来答
社无小事
高能答主

2022-01-02 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20404

向TA提问 私信TA
展开全部

齐次线性方程组的基础解系所含解向量的个数为n-r个。

对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;

若r(A)=r<n(未知量的个数),则原方程组有非零解,继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

常数项全为0的n元线性方程组

设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:

1、当r=n时,原方程组仅有零解;

2、当r<n时,有无穷多个解(从而有非零解)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式