3个回答
展开全部
=sin50(1+tan60tan10)
=sin50(tan60-tan10)/tan(60-10)
=cos50(tan60-tan10)
=cos50(sin60cos10-sin10cos50)/cos60cos10
=cos50sin50/cos60cos10
=cos10/(2*1/2*cos10)
=cos10/cos10
=1
=sin50(tan60-tan10)/tan(60-10)
=cos50(tan60-tan10)
=cos50(sin60cos10-sin10cos50)/cos60cos10
=cos50sin50/cos60cos10
=cos10/(2*1/2*cos10)
=cos10/cos10
=1
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin50(1+√3tan10)
=sin50[1+(√3sin10/cos10)]
=sin50[cos10+√3sin10)/cos10]
=2sin50[(1/2)cos10+(√3/2)sin10)/cos10]
=2sin50[cos60cos10+sin60sin10)/cos10]
=2sin50cos(60-10)/cos10
=2sin50cos50/cos10
=sin100/cos10
=cos10/cos10
=1
=sin50[1+(√3sin10/cos10)]
=sin50[cos10+√3sin10)/cos10]
=2sin50[(1/2)cos10+(√3/2)sin10)/cos10]
=2sin50[cos60cos10+sin60sin10)/cos10]
=2sin50cos(60-10)/cos10
=2sin50cos50/cos10
=sin100/cos10
=cos10/cos10
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询