一个函数,二阶导数为0,三阶导数不为0,为什么一定是拐点

 我来答
新科技17
2022-06-24 · TA获得超过5896个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.4万
展开全部
拐点定义:一般的,设y=f(x)在区间I上连续,x0是I的内点(除端点外的I内的点).如果曲线y=f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称点(x0,f(x0))为这曲线的拐点
这样
设f(x)在(a,b)内二阶可导,x0∈(a,b),则f‘’(x0)=0,若在x0两侧附近f‘’(x0)异号,则点(x0,f(x0))为曲线的拐点.否则(即f‘’(x0)保持同号,(x0,f(x0))不是拐点.
三阶导数不为零则2阶导数的正负在该店附近改变,进而凹凸性改变,为拐点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式