判断偏导数是否连续
展开全部
判断偏导数是否连续
问题一:怎么判断这道题的偏导数是否存在,是否连续?连续是要在点(0,0)的一个邻域内所有值都相等,当以直线Y=KX靠近时,显然与K值有关,所以不连续。对X的偏导存在只需在X轴方向上邻域内的值相等就行,所以存在。对Y同理。
(但是全微分就不存在)
问题二:给定一个二元函数怎么判断是否连续偏导数是否存在首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函数连续的,按照上面的分析,你写的那三条当然都是不能逆向推理的.事实上偏导数连续虽然能推出函数连续,但条件过强,而偏导数存在这个条件又由于太弱从而推不出函数连续,比较“适中”的条件是,偏导数在一点的某个邻域内有界,则函数在该点连续,这是一个定理.以上说的那些不能推出的,都是有反例的,有兴趣的话你可以自己在书上找找.
问题三:如何判断一个函数在一个点处是否存在偏导数和是否连续函数在该点的左右极限相等且等于该点函数值则连续,用偏导数定义求偏导数若极限存在则偏导数存在
问题四:如何证明偏导数是连续的?先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)=c,即偏导数连续,否则不连续.
问题五:如何判定偏导数连续偏导数要存在,则函数的左极限等于右极限,左导数等于右导数。也就是说由偏导数存在能够推出函数连续。但是函数连续无法推出偏导数存在,比如三角波信号,三角形顶点左极限等于右极限,但是左导数和右导数一个为正,一个为负。。。。。嗯。。。这个是必要非充分吧,A
问题六:偏导数是否连续。函数
f(x,y)=(x2+y2)sin[1/(x2+y2)],x2+y2≠0,
=0,x2+y2=0,
的偏导数
fx(x,y)=2xsin[1/(x2+y2)]+(x2+y2)cos[1/(x2+y2)]*[-2x/(x2+y2)2],x2+y2≠0,
=0,x2+y2=0,
其中
fx(0,0)=lim(x→0)[f(x,0)-f(0,0)]/x
=lim(x→0){x2sin[1/(x2+y2)]-0}/x
=lim(x→0)xsin[1/(x2+y2)]
=0。
易验
lim(x→0)fx(x,y)=0=fx(0,0),
即fx(x,y)在(0,0)连续。同理,可证另一个偏导数的连续性。
不明白可追问,没有请采纳,您的采纳才是对答题者最好的谢谢。
问题七:左右导数为什么可以判断导数是否连续这问题别问了,这是个基本概念问题,你能问出来说明你需要懂相关概念,不懂解释也没用
问题一:怎么判断这道题的偏导数是否存在,是否连续?连续是要在点(0,0)的一个邻域内所有值都相等,当以直线Y=KX靠近时,显然与K值有关,所以不连续。对X的偏导存在只需在X轴方向上邻域内的值相等就行,所以存在。对Y同理。
(但是全微分就不存在)
问题二:给定一个二元函数怎么判断是否连续偏导数是否存在首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函数连续的,按照上面的分析,你写的那三条当然都是不能逆向推理的.事实上偏导数连续虽然能推出函数连续,但条件过强,而偏导数存在这个条件又由于太弱从而推不出函数连续,比较“适中”的条件是,偏导数在一点的某个邻域内有界,则函数在该点连续,这是一个定理.以上说的那些不能推出的,都是有反例的,有兴趣的话你可以自己在书上找找.
问题三:如何判断一个函数在一个点处是否存在偏导数和是否连续函数在该点的左右极限相等且等于该点函数值则连续,用偏导数定义求偏导数若极限存在则偏导数存在
问题四:如何证明偏导数是连续的?先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)=c,即偏导数连续,否则不连续.
问题五:如何判定偏导数连续偏导数要存在,则函数的左极限等于右极限,左导数等于右导数。也就是说由偏导数存在能够推出函数连续。但是函数连续无法推出偏导数存在,比如三角波信号,三角形顶点左极限等于右极限,但是左导数和右导数一个为正,一个为负。。。。。嗯。。。这个是必要非充分吧,A
问题六:偏导数是否连续。函数
f(x,y)=(x2+y2)sin[1/(x2+y2)],x2+y2≠0,
=0,x2+y2=0,
的偏导数
fx(x,y)=2xsin[1/(x2+y2)]+(x2+y2)cos[1/(x2+y2)]*[-2x/(x2+y2)2],x2+y2≠0,
=0,x2+y2=0,
其中
fx(0,0)=lim(x→0)[f(x,0)-f(0,0)]/x
=lim(x→0){x2sin[1/(x2+y2)]-0}/x
=lim(x→0)xsin[1/(x2+y2)]
=0。
易验
lim(x→0)fx(x,y)=0=fx(0,0),
即fx(x,y)在(0,0)连续。同理,可证另一个偏导数的连续性。
不明白可追问,没有请采纳,您的采纳才是对答题者最好的谢谢。
问题七:左右导数为什么可以判断导数是否连续这问题别问了,这是个基本概念问题,你能问出来说明你需要懂相关概念,不懂解释也没用
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询