若矩阵A正定,证明A可逆并且A-1也正定

 我来答
机器1718
2022-05-29 · TA获得超过6798个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:157万
展开全部
证明: 因为矩阵A正定, 所以A的所有顺序主子式都大于0, 特别有 |A|>0. 故A可逆.又由A正定, 所以A是对称矩阵, A'=A.所以 (A^-1)' = (A')^-1 = A^-1. 故A是对称矩阵.再由A正定, 存在可逆矩阵C使得 C'AC = E.等式两边取...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式