当x属于[0,π/2]时,求函数f(x)=sin(π/6-x)-cosx的值域
展开全部
f(x)=sin(π/6-x)-cosx
=sinπ/6cosx-cosπ/6sinx-2sinπ/6cosx
=-sinπ/6cosx-cosπ/6sinx
=-sin(π/6+x)
当x属于[0,π/2]时
π/6+x属于[π/6,2π/3]
1/2=sinπ/6≤sin(π/6+x)≤sinπ/2=1
-1≤-sin(π/6+x)≤-1/2
当x属于[0,π/2]时,求函数f(x)=sin(π/6-x)-cosx的值域是[-1,-1/2]
=sinπ/6cosx-cosπ/6sinx-2sinπ/6cosx
=-sinπ/6cosx-cosπ/6sinx
=-sin(π/6+x)
当x属于[0,π/2]时
π/6+x属于[π/6,2π/3]
1/2=sinπ/6≤sin(π/6+x)≤sinπ/2=1
-1≤-sin(π/6+x)≤-1/2
当x属于[0,π/2]时,求函数f(x)=sin(π/6-x)-cosx的值域是[-1,-1/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询