已知△ABC的重心的直线交AB边于Q,交AC边于P,设向量AP=λ向量AB,向量AQ=μ向量AC,求证1/λ+1/μ=3
已知△ABC的重心的直线交AB边于Q,交AC边于P,设向量AP=λ向量AB,向量AQ=μ向量AC,求证1/λ+1/μ=3...
已知△ABC的重心的直线交AB边于Q,交AC边于P,设向量AP=λ向量AB,向量AQ=μ向量AC,求证1/λ+1/μ=3
展开
展开全部
题目叙述稍微有点问题,依据题意,应该是:向量AQ=λ向量AB,向量AP=μ向量AC
设重心是O,BC边中点是D,则:AO=(2/3)AD=(2/3)*2(AB+AC)=(AB+AC)/3
故:OQ=AQ-AO=λAB-(AB+AC)/3=(λ-1/3)AB-AC/3
PO=AO-AP=(AB+AC)/3-μAC=AB/3+(1/3-μ)AC,因PO与OQ是共线向量
故存在关系:OQ=kPO,即:(λ-1/3)AB-AC/3=k*(AB/3+(1/3-μ)AC)
即:(λ-1/3)=k/3,-1/3=k(1/3-μ),即:λ=1/3+k/3=(k+1)/3,μ=1/3+1/(3k)=(k+1)/(3k)
故:1/λ+1/μ=3/(k+1)+3k/(k+1)=3(k+1)/(k+1)=3
设重心是O,BC边中点是D,则:AO=(2/3)AD=(2/3)*2(AB+AC)=(AB+AC)/3
故:OQ=AQ-AO=λAB-(AB+AC)/3=(λ-1/3)AB-AC/3
PO=AO-AP=(AB+AC)/3-μAC=AB/3+(1/3-μ)AC,因PO与OQ是共线向量
故存在关系:OQ=kPO,即:(λ-1/3)AB-AC/3=k*(AB/3+(1/3-μ)AC)
即:(λ-1/3)=k/3,-1/3=k(1/3-μ),即:λ=1/3+k/3=(k+1)/3,μ=1/3+1/(3k)=(k+1)/(3k)
故:1/λ+1/μ=3/(k+1)+3k/(k+1)=3(k+1)/(k+1)=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询