已知矩阵A可对角化,证明A的伴随矩阵也可对角化 A可逆,如题

 我来答
天罗网17
2022-08-24 · TA获得超过6191个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.3万
展开全部
证明:
矩阵A可对角化,
则存在可逆阵P,使P^(-1)AP=N为对角阵,
P*[P^(-1)AP]*P^(-1)=PNP^(-1)
A=PNP^(-1),
A可逆,

A^(-1)=[PNP^(-1)]^(-1)
=PN^(-1)P^(-1)
A*为A的伴随矩阵,
则A*(A*)=|A|E,
A*=A^(-1)|A|E=|A|A^(-1)
=|A|PN^(-1)P^(-1)
=P*[|A|*N^(-1)]P^(-1)

P^(-1)*(A*)*P=|A|N^(-1)
因为N为对角阵,则N^(-1)为对角阵,
从而|A|*N^(-1)为对角阵,
所以根据定义可知,
A的伴随矩阵A*也可对角化.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式