求证(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)=tanx/2?
1个回答
展开全部
(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=(2sin2xcos2x)/(1+2cos²2x-1)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=(2sin2xcos2x)/(2cos²2x)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=2sin2x/cos2x*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=2sin2x/(1+cos2x)*(cosx)/(1+cosx)
=2sinxcosx/(1+2cos²x-1)*(cosx)/(1+cosx)
=2sinxcosx/2cos²x*(cosx)/(1+cosx)
=sinx/cosx*(cosx)/(1+cosx)
=sinx/(1+cosx)
=(2sinx/2cosx/2)/(1+2cos²x/2-1)
=(2sinx/2cosx/2)/2cos²x/2
=(sinx/2)/cosx/2
=tanx/2,2,(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)
=2sin2xcos2x/(2cos²2x)*cos2x/(2cos²x)*cosx/(2cos²x/2)
=sin2x/cos2x*cos2x/(2cos²x)*cosx/(2cos²x/2)
=2sinxcosx/(2cos²x)*cosx/(2cos²x/2)
=sinx/(2cos²x/2)
=2sinx/2cosx/2/(2cos²x/2)
=sinx/2/cosx/2
=tanx/2,0,
=(2sin2xcos2x)/(1+2cos²2x-1)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=(2sin2xcos2x)/(2cos²2x)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=2sin2x/cos2x*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=2sin2x/(1+cos2x)*(cosx)/(1+cosx)
=2sinxcosx/(1+2cos²x-1)*(cosx)/(1+cosx)
=2sinxcosx/2cos²x*(cosx)/(1+cosx)
=sinx/cosx*(cosx)/(1+cosx)
=sinx/(1+cosx)
=(2sinx/2cosx/2)/(1+2cos²x/2-1)
=(2sinx/2cosx/2)/2cos²x/2
=(sinx/2)/cosx/2
=tanx/2,2,(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)
=2sin2xcos2x/(2cos²2x)*cos2x/(2cos²x)*cosx/(2cos²x/2)
=sin2x/cos2x*cos2x/(2cos²x)*cosx/(2cos²x/2)
=2sinxcosx/(2cos²x)*cosx/(2cos²x/2)
=sinx/(2cos²x/2)
=2sinx/2cosx/2/(2cos²x/2)
=sinx/2/cosx/2
=tanx/2,0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询