奇函数的反常积分为0吗
展开全部
收敛的奇函数在负无穷到正无穷上的积分为0。
无穷限积分属于反常积分,所以应根据反常积分的敛散性来判断,在0到正无穷上,如果收敛,那么积分值为0;如果发散,则积分发散。
奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。
1727年,年轻的瑞士数学家欧拉在提交给圣彼得堡科学院的旨在解决“反弹道问题”的一篇论文(原文为拉丁文)中,首次提出了奇、偶函数的概念。
无穷限积分属于反常积分,所以应根据反常积分的敛散性来判断,在0到正无穷上,如果收敛,那么积分值为0;如果发散,则积分发散。
奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。
1727年,年轻的瑞士数学家欧拉在提交给圣彼得堡科学院的旨在解决“反弹道问题”的一篇论文(原文为拉丁文)中,首次提出了奇、偶函数的概念。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询