已知抛物线y=x²+mx-3/4m²(m>0)与x轴交于A、B两点

已知抛物线y=x²+mx-3/4m²(m>0)与x轴交于A、B两点(1)求证:抛物线的对称轴在y轴的左侧;(2)若1/OB-1/OA=2/3(O是坐标... 已知抛物线y=x²+mx-3/4m²(m>0)与x轴交于A、B两点 (1)求证:抛物线的对称轴在y轴的左侧;
(2)若1/OB-1/OA=2/3(O是坐标原点),求抛物线的解析式;
(3)设抛物线与y轴的交于点C,若△ABC是直角三角形,求△ABC的面积
展开
穿越时空任逍遥
2013-03-04 · TA获得超过139个赞
知道答主
回答量:50
采纳率:100%
帮助的人:29.9万
展开全部
解:(1).证明:由于y=x²+mx-3/4m²=(x+m/2)²-m²/4-3m²/4=(x+m/2)²-m²;
该抛物线对称轴为x=-m/2; m>0; 故该抛物线的对称轴在y轴的左侧;
(2).x²+mx-3/4m²=(x+m/2)²-m²=(x+m/2+m)(x+m/2-m)=(x+3m/2)(x-m/2)=0;
x1=-3m/2; x2=m/2; 由于1/OB-1/OA=2/3;故1/OB>1/OA; OA>OB; 所以:A(-3m/2,0);
B(m/2,0); OB=m/2; OA=3m/2; 1/OB-1/OA=2/m-2/(3m)=2/3;
6-2=2m=4; m=2; 故该抛物线解析式为:y=x²+2x-3;
(3).令x=0,则y=-3m²/4; 故 C(0,-3m²/4); 由(2)知:A(-3m/2,0); B(m/2,0);
AC²=9m²/4+9m^4/16; BC²=m²/4+9m^4/16; AB²=(m/2+3m/2)²=4m²;
当AC²+BC²=AB²时 ;5m²/2+9m^4/8=4m²; 5/2+9m²/8=4; 20+9m²=32; m²=12/9;
m=2√3/3;
当AC²=BC²+AB²时,9m²/4+9m^4/16=m²/4+9m^4/16+4m²;2m²=4m²; m=0; 这是不可能的;
故:m=2√3/3;m²=4/3; AB²=16/3; AC²=4; BC²=4/3; ;
AB=4/√3; AC=2; BC=2/√3; C为直角; △ABC的面积=AC×BC/2=2/√3=2√3/3;
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式