离散数学中的布尔矩阵相乘是怎么计算的?

OnlyOne00
高粉答主

2019-08-06 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:649
采纳率:100%
帮助的人:17.8万
展开全部

布尔矩阵相乘:

1、第一个矩阵中第一行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第一行第一列元素;

2、第一个矩阵中第一行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第一行第二列元素;

3、第一个矩阵中第一行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第一行第三列元素;

4、第一个矩阵中第二行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第二行第一列元素;

5、第一个矩阵中第二行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第二行第二列元素;

6、第一个矩阵中第二行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第二行第三列元素;

7、第一个矩阵中第三行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第三行第一列元素;

8、第一个矩阵中第三行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第三行第二列元素;

9、第一个矩阵中第三行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第三行第三列元素。

例如:

扩展资料

布尔运算有三种分别是或、与、非。

表示方法

"∨" 表示"或".

"∧" 表示"与".

"┐"表示"非".

"=" 表示"等价".

1和0表示"真"和"假"

(还有一种表示,"+"表示"或", "·"表示"与")

布尔运算是数字符号化的逻辑推演法,包括联合、相交、相减。在图形处理操作中引用了这种逻辑运算方法以使简单的基本图形组合产生新的形体,并由二维布尔运算发展到三维图形的布尔运算。

由于布尔在符号逻辑运算中的特殊贡献,很多计算机语言中将逻辑运算称为布尔运算,将其结果称为布尔值

参考资料来源:百度百科-布尔运算

zzx梓
2019-06-25 · TA获得超过3823个赞
知道答主
回答量:14
采纳率:100%
帮助的人:2682
展开全部

布尔矩阵相乘:

1、第一个矩阵中第一行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第一行第一列元素;

2、第一个矩阵中第一行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第一行第二列元素;

3、第一个矩阵中第一行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第一行第三列元素;

4、第一个矩阵中第二行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第二行第一列元素;

5、第一个矩阵中第二行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第二行第二列元素;

6、第一个矩阵中第二行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第二行第三列元素;

7、第一个矩阵中第三行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第三行第一列元素;

8、第一个矩阵中第三行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第三行第二列元素;

9、第一个矩阵中第三行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第三行第三列元素。

例如:

扩展资料:

一、布尔运算:

布尔用数学方法研究逻辑问题,成功地建立了逻辑演算。他用等式表示判断,把推理看作等式的变换。这种变换的有效性不依赖人们对符号的解释,只依赖于符号的组合规律 。这一逻辑理论人们常称它为布尔代数。

20世纪30年代,逻辑代数在电路系统上获得应用,随后,由于电子技术与计算机的发展,出现各种复杂的大系统,它们的变换规律也遵守布尔所揭示的规律。

二、布尔运算表示方法:

1、"∨" 表示"或"

2、"∧" 表示"与".

3、"┐"表示"非".

4、"=" 表示"等价".

5、1和0表示"真"和"假"

(还有一种表示,"+"表示"或", "·"表示"与")

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
江湖馨手
推荐于2017-12-16 · TA获得超过759个赞
知道小有建树答主
回答量:383
采纳率:100%
帮助的人:95.2万
展开全部

布尔矩阵相乘:

第一个矩阵中第一行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第一行第一列元素;

第一个矩阵中第一行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第一行第二列元素;

第一个矩阵中第一行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第一行第三列元素;

第一个矩阵中第二行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第二行第一列元素;

第一个矩阵中第二行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第二行第二列元素;

第一个矩阵中第二行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第二行第三列元素;

第一个矩阵中第三行的各元素与第二个矩阵中第一列的各元素对应之积的和,作为乘积矩阵的第三行第一列元素;

第一个矩阵中第三行的各元素与第二个矩阵中第二列的各元素对应之积的和,作为乘积矩阵的第三行第二列元素;

第一个矩阵中第三行的各元素与第二个矩阵中第三列的各元素对应之积的和,作为乘积矩阵的第三行第三列元素;

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lry31383
高粉答主

2013-03-06 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
矩阵的乘法 与 一般矩阵的乘法是一样的
只是数的加法与乘法运算不同:
0+0=0,
0+1=1+0=1,
1+1=0 (这个不同)
0*0=0, 0*1=1*0=0, 1*1=1
追问
图中的结果是怎么算出来的,能讲一下吗?我也不懂一般矩阵是怎么相乘的
追答

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式