设x1,x2,x3......xn都是正数,求证:x1^2/x2+x2^2/x2+......+xn-1^2/xn+xn^2/x1>=x1+x2+x3+......+xn.

algbraic
2013-03-07 · TA获得超过4924个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:731万
展开全部
最直接的就是用Cauchy不等式得:
(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)
≥ (x1+x2+...+x(n-1)+xn)^2.
两边除以x2+x3+...+xn+x1 = x1+x2+...+x(n-1)+xn即得.

也可以用均值不等式局部放缩:
x1^2/x2+x2 ≥ 2x1,
x2^2/x3+x3 ≥ 2x2,
...
x(n-1)^2/xn+xn ≥ 2x(n-1),
xn^2/x1+x1 ≥ 2xn.
相加整理即得.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式