点P在抛物线Y2=4X上,点P到A(2,3)的距离与点P到抛物线焦点的距离之差( ) A.有最小值,但无最大值 B.有最大,

点P在抛物线Y2=4X上,点P到A(2,3)的距离与点P到抛物线焦点的距离之差()A.有最小值,但无最大值B.有最大,但无最小值C既无最大值,又无最小值D.既有最大值,又... 点P在抛物线Y2=4X上,点P到A(2,3)的距离与点P到抛物线焦点的距离之差( ) A.有最小值,但无最大值 B.有最大,但无最小值 C既无最大值,又无最小值 D.既有最大值,又有最小值 展开
百度网友b9b6e37
2013-03-08 · TA获得超过7005个赞
知道大有可为答主
回答量:1239
采纳率:100%
帮助的人:183万
展开全部
方法1:

设点p(x,y)在抛物线上
p距焦点F的距离等于P距准线的距离
所以PF=x+1
PA=根号((y-3)^2+(x-2)^2)
y=2根号x

所以PA-PF=-x-1+根号(x^2+12根号x+13)
如果用函数去做的话非常复杂 我前两天写了差不多的一道题
非常复杂 不推荐

方法二:
A在抛物线的外面
任意选一个P点
PAF三点的情况有两种
一是组成三角形
而是直线
三角形中有定理
两边之差<第三边
当pFA共线的·时候
两边之差会刚好等于第三边
此时最大(注意:PFA共线有两种情况 这里说的不是P在中间的那个情况,是P在F下方的 因为这样才能使PA-PF=AF最大

使P趋于无穷远处(想象无穷远)
这时PA-PF几乎会等于PA的横坐标之差-PF的横坐标之差=x-2-(x-1)=-1
因为纵轴上AF的差值和PA长度PF长度想比很小很小 忽略不计
但是因为AF y方向上的长度是存在的
再无穷远也不能达到-1的最小值
如果用函数去计算的话 求导计算是可以得到这个结果的
我之前做过一道差不多的 求导做出来了
选择题用方法二即可

所以综上 PA-PF有最大值没有最小值
只有下确界 -1
追问
再帮我看道题  3Q啦   设f(x)=  ︳ x-a︳+2x,其中a>0 若x属于(-2,正无穷),恒友f(x)>0 求a的取值范围
百度网友d1d702a
2013-03-08 · 超过19用户采纳过TA的回答
知道答主
回答量:31
采纳率:0%
帮助的人:37.6万
展开全部
我个人认为应该选则A

1.把这几个点连接可以构成三角形(三点不共线),边AP-PF<AF(三角形两边只差小于第三边)所以无最大值
2.若三点共线,此时所得值最小

总结,本题A点在抛物线之外,若A点在抛物线里面(如A(2,1)),则可将P到焦点的距离转换为到准线的距离,之后在寻找规律
更多追问追答
追问
P在F点下应该是有最大值啊
追答
P在F下是什么意思
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式