已知三角形ABC中,2根号2(sinA^2-sinC^2)=(a-b)sinB,外接圆半径为根号2,求三角形面积的最大值

要有过程啊... 要有过程啊 展开
370116
高赞答主

2013-03-09 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.2亿
展开全部
(1)△ABC外接圆半径为R=√2.
由正弦定理:a/sinA=b/sinB=c/sinC=2R得
sinA=a/(2√2),sinB=b/(2√2),sinC=c/(2√2)
代入已知条件2√2*(sin^2A-sin^2C)=(a-b)sinB中
化简得 a²+b²-c²=ab
由余弦定理得 cosC=(a²+b²-c²)/(2ab)=1/2
∴C=60°.
c=(2R)sinC=(2√2)sin60°=√6.

(2)∵a²+b²≥2ab,即c²+ab ≥2ab,
∴ab≤c²,即ab≤6.
故SΔABC=(1/2)absin 60°≤(3/2)√3.
即SΔABC最大值=(3/2)√3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式