在△ABC中,a,b,c分别是角A,B,C所对的边,且a=1/2c+bcosC。 1.求角B的大小 2.若S△ABC=√3 ,求b的最小值

仁新Q3
2013-03-10 · TA获得超过1.9万个赞
知道大有可为答主
回答量:4219
采纳率:85%
帮助的人:1819万
展开全部
c^2=a^2+b^2-2abcosC
cosC=(a^2+b^2-c^2)/2ab (1)
a=1/2c+bcosC
cosC=(a-1/2c)/b (2)
由(1)和(2)可得:(a^2+b^2-c^2)/2ab=(a-1/2c)/b
a^2+b^2-c^2=2a^2-ac
b^2=a^2+c^2-ac (3)
b^2=a^2+c^2-2ac*cosB (4)
由(1)和(2)可得:a^2+c^2-ac =a^2+c^2-2ac*cosB
cosB=1/2, B=60
S=ac*sinB/2=ac*sin60/2=√3
ac=4
b^2=a^2+c^2-ac =(a-c)^2+ac
当a=c时,(a-c)^2=0, b^2有最小值,即b^2≧ac=4
b>0, b的最小值为2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式