如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=7:1,求∠AOF的度数
展开全部
解:∵∠AOD:∠BOE=7:1
∴∠AOD=7∠BOE
又OE平分∠BOD
∴∠BOD=2∠BOE
又∠AOD+∠BOD=180°
∴7∠BOE+2∠BOE=180°
解之得:∠BOE=20°
∴∠BOD=2*20°
=40°
∴∠BOC=180°-∠BOD
=180°-40°
=140°
又OF平分∠COE
∴∠COF=(∠BOC+20°)/2
=(140°+20°)/2
=80°
∴∠BOF=80°-20°
=60°
又∠AOF+∠BOF=180°
∴∠AOF=180°-∠BOF
=180°-60°
=120°
∴∠AOD=7∠BOE
又OE平分∠BOD
∴∠BOD=2∠BOE
又∠AOD+∠BOD=180°
∴7∠BOE+2∠BOE=180°
解之得:∠BOE=20°
∴∠BOD=2*20°
=40°
∴∠BOC=180°-∠BOD
=180°-40°
=140°
又OF平分∠COE
∴∠COF=(∠BOC+20°)/2
=(140°+20°)/2
=80°
∴∠BOF=80°-20°
=60°
又∠AOF+∠BOF=180°
∴∠AOF=180°-∠BOF
=180°-60°
=120°
展开全部
解:∵∠AOD:∠BOE=7:1
∴∠AOD=7∠BOE
又OE平分∠BOD
∴∠BOD=2∠BOE
又∠AOD+∠BOD=180°
∴7∠BOE+2∠BOE=180°
解之得:∠BOE=20°
∴∠BOD=2*20°
=40°
∴∠BOC=180°-∠BOD
=180°-40°
=140°
又OF平分∠COE
∴∠COF=(∠BOC+20°)/2
=(140°+20°)/2
=80°
∴∠BOF=80°-20°
=60°
又∠AOF+∠BOF=180°
∴∠AOF=180°-∠BOF
=180°-60°
=120°
∴∠AOD=7∠BOE
又OE平分∠BOD
∴∠BOD=2∠BOE
又∠AOD+∠BOD=180°
∴7∠BOE+2∠BOE=180°
解之得:∠BOE=20°
∴∠BOD=2*20°
=40°
∴∠BOC=180°-∠BOD
=180°-40°
=140°
又OF平分∠COE
∴∠COF=(∠BOC+20°)/2
=(140°+20°)/2
=80°
∴∠BOF=80°-20°
=60°
又∠AOF+∠BOF=180°
∴∠AOF=180°-∠BOF
=180°-60°
=120°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询